
Introduction

Plasmodium falciparum dihydrofolate reductase (PfDHFR) 
enzyme is one of the several targets in the treatment of 
malaria1–5. This enzyme catalyzes the nicotinamide adenine 
nucleotide phosphate (NADPH) dependent reduction of 
dihydrofolate (DHF) to tetrahydrofolate (THF), which is 
essential for DNA synthesis in the parasitic cell. It has been 
recognized as a specific target for common antifolate-based 
antimalarial drugs: pyrimethamine (1) and cycloguanil (2) 
(Figure 1). These drugs competitively inhibit DNA synthesis, 
and ultimately lead to parasitic death. However, due to the 
accumulation of genetic mutations6–11 at one or more amino 
acid residues 16, 51, 59, 108, and 164, the parasite has become 
highly resistant to these antifolate drugs. Thus, the clinical 
uses of these drugs have been compromised in many parts 
of the world.

Steric clashes between a particular inhibitor and mutated 
amino acid residues result in the displacement of a drug from 
its optimal orientation in its interaction with residue Asp54, 
which is crucial for inhibitor binding, with consequent loss 
of inhibitory activity. For instance, in the parasite harboring 
Ala16Val + Ser108Thr mutation, one of the methyl groups 
at the 6-position of 2 experiences a severe steric interaction 
with Val16. This results in the development of resistance of 
the parasite to 2. On the other hand, in the case of a multiple-
mutant parasite, steric clashes of the para-Cl groups of both 
1 and 2 with Asn108 (mutated from Ser108) result in the loss 
of inhibitory activities of these drugs or increase the chance 
of the parasite to develop cross-resistance7. These observa-
tions led to the conception of steric constraint hypothesis. 
According to this hypothesis, (i) changing the position of 
the para-Cl group to the meta position and (ii) the use of 
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compounds which are more flexible than 1 and 2 could avoid 
steric clashes, and subsequently result in agents that effec-
tively inhibit mutant PfDHFRs7,12–18. WR99210 (3) is one of 
the typical examples of compounds designed to avoid steric 
clash with Asn108 of the mutant PfDHFR enzyme (Figure 1). 
Inhibitory activity tests indicated that this compound has 
similar activities against wild-type and multiple-mutant 
parasites carrying the Asn51Ile + Cys59Arg + Ser108Asn + 
Ile164Leu mutated DHFR enzyme. However, because of  
toxicity problems, this compound could not advance into 
clinical stages19,20. However, it is still used as a model com-
pound for designing competitive PfDHFR inhibitors of 
flexible nature.

Virtual screening is a computer-based strategy used 
to identify new potential lead compounds from large 
databases of compounds that are subsequently synthe-
sized and tested for their biological activities21–23. It has 
also been employed in the discovery of PfDHFR enzyme 
inhibitors7,24. Rastelli et al.25 employed virtual screening, 
which led to the identification of 12 new leads whose 
chemical structures are different from those of clas-
sical antifolates. Enzyme assay and inhibition studies 
indicated that the compounds are generally more active 
toward mutant enzyme than wild-type PfDHFR enzyme. 
Recently, Dasgupta et  al.26 carried out high-throughput 
in silico screening of a database with consequent in vitro 
enzymatic assay and cellular culture studies. They identi-
fied three novel compounds (RJF001302, RJF00670, and 
RJF00719) of biguanide analogs. The compounds were 
found to be active against both wild-type and quadruple-
mutant PfDHFRs. In spite of the accumulation of a wealth 
of information and several efforts, no successful drug has 
come on to the market to combat malaria. Thus, there is 
always an urgent and unmet need for new drugs to cure 
malaria.

In this article, we present some hits obtained from 
a database search. Catalyst/HipHop software was used 
to generate the 3D-pharmacophore model from a set of 
compounds whose antimalarial activities are reported 
in literature27. HipHop, also known as a common-feature 
hypothesis, is used as a method for 3D-pharmacophore 
model generation in a training set of compounds having 
high structural homology and a narrow activity range. In 
this method, no activity data are required. This is because 
only chemical features common to all training set mole-
cules are taken into account for model generation28,29. A set 
of nine hits were identified from our screening. Selection 
of the hits was based on their (i) best-fit values, (ii) binding 

scores, (iii) binding modes, and (iv) interactions with 
important amino acid residues in the active site such as 
Asp54, Leu164, Asn108, and Ile14, which are known to be 
essential for inhibitory activities of antifolate-based anti-
malarial drugs. Two docking programs, namely, FlexX30,31 
and Glide32,33, were used to carry out calculations on the 
hits obtained from the database search.

Materials and methods

Hypothesis generation and validation
A data set of 24 compounds for which in vitro inhibitory 
activities against the multiple-drug esistant (V1/S strain) 
PfDHFR enzyme reported in the literature were used27. 
The chemical structures of the molecules were constructed 
using the 2D/3D-editor sketcher of Catalyst, and standard 
3D-structures were generated and minimized to the nearest 
local minimum using the molecular mechanics CHARMm 
force field implemented in the Catalyst program34. In order 
to represent flexibility, a collection of conformational 
models were generated for each compound. These mod-
els were generated automatically, starting from the local 
minimized structures, using a “polling” algorithm35,36. The 
“best conformer generation” option of the Catalyst software 
was employed. The default value of 255 was used for the 
maximum number of conformer generations per molecule. 
All the conformers within a range of 20 kcal/mol, with 
respect to the global minimum, were employed to build a 
set of pharmacophore hypotheses. Pharmacophore model 
generation was carried out using the HipHop module of 
Accelrys Catalyst software (version 4.10)34. The training set 
molecules, with their associated conformational models, 
were rearranged into a spreadsheet and subsequently 
submitted to Catalyst hypothesis generation using the 
HipHop module. HipHop accommodates hypotheses with 
up to 10 different features which are necessary for biologi-
cal activities of compounds, and are distributed within a 
three-dimensional (3D) space. Chemical features that are 
surface-accessible and common in hypothesis generation 
include hydrogen bond donor, hydrogen bond acceptor, 
ring aromatic, hydrogen bond acceptor lipid, hydropho-
bic, hydrophobic aromatic, hydrophobic aliphatic, nega-
tive ionizable, positive ionizable, negative charge, and 
positive charge37. Different hypotheses were generated by 
varying the default values of the control parameters and 
altering the feature selection in order to build the best 3D-
pharmacophore model. The hypothesis used in this study 
was obtained by setting three parameters: misses, feature 
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Figure 1.  Chemical structures of pyrimethamine (1), cycloguanil (2), and WR99210 (3).
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misses, and complete misses to 3, 2, and 2, respectively. 
The Principal value of 2 and MaxOmitFeat value of 0 were 
assigned to the most active compounds (3 and 17). This was 
to allow the two compounds to map all the features in the 
hypotheses. For the rest of the compounds, the Principal 
value of 1 and MaxOmitFeat value of 1 were assigned. 
Details of these control parameters are given in the Catalyst 
users’ manual37. The selected features were hydrogen bond 
donor, positive ionizable, hydrophobic aromatic, ring aro-
matic, and aliphatic aromatic.

The validity of the model was evaluated based on (i) the 
presence of important chemical features required for inter-
action with key amino acid residues (Asp54, Ile14, Leu164) 
in the active site of the PfDHFR enzyme and (ii) the best-fit 
values of the training set molecules and/or matching of their 
chemical features with those of the model.

Database search
The 3D-pharmacophore model (hypo1) was used as a query 
to search hits from the Maybridge2004 database (59,652 
compounds) and NCI2000 database (238,819 compounds). 
The “best and flexible database search” option of the Catalyst 
program34 was employed to perform the virtual screening. 
Primary filters such as Lipinski’s rule-of-five38 and restrict-
ing the number of rotatable bonds39,40 to ≤7 were applied to 
reduce the data set. Further screening of the hits was carried 
out using two docking algorithms,FlexX30,31 and Glide32,33.

Molecular docking studies
The X-ray crystal structure of the quadruple-mutant PfDHFR 
enzyme (1J3K:pdb)11 was obtained from the RCSB Protein 
Data Bank and was used in order to model the protein 
structure in this study. It contains 3 bound into the active 
site in the presence of NADPH. FlexX- and Glide-based 
docking programs were used to carry out screening of the 
hits obtained from the database search. FlexX is a fast, flex-
ible docking method that uses an incremental construction 
algorithm to place ligands into an active site30,31. During 
preparation of the receptor description file (rdf) for FlexX 
docking, a radius of 6.5Å around the bound ligand was used 
to define the active site41. The formal charges were assigned 
to the molecules before submission for docking calculation. 
Default parameters were used, and 30 solutions were gener-
ated for each compound. For the purpose of prioritization of 
hits during selection, G-score42, PMF-score43, D-score44, and 
ChemScore45 were also estimated.

Another method used for the molecular docking 
study was Glide. Glide (Grid-based Ligand Docking with 
Energetics) uses a series of hierarchical filters to search 
for possible locations in the active site region of the 
receptor32,33. The properties of a receptor/active site region 
are represented by a grid that has different sets of fields 
that provide progressively more accurate scoring of the 
ligand pose. It uses a Glide score (Gscore) for predicting 
binding affinity and rank ordering of ligands in the data-
base screen. Another scoring function, which is much bet-
ter than G-score in selecting the correct pose, and is used 

along with Gscore, is Emodel. For details of the methodol-
ogy, refer to the original literature32,33. Glide v4.5 was used 
for the calculations46. During protein preparation for Glide 
docking in this study, only chain A and cofactor NDP610 
of PfDHFR-TS (thymidylate synthase) were retained. All 
water molecules and the rest of the chains (B, C, and D) 
were removed from the complex, and the protein was mini-
mized using the “protein preparation wizard” and default 
parameters. Partial atomic charges were assigned accord-
ing to the OPLS-AA force field. A radius of 15 Å was selected 
for the active site cavity during receptor grid generation46. 
Molecules were drawn in SYBYL7.1, and were imported to 
the Glide window and subsequently converted into Maestro 
format using the LigPrep module of Glide. The output was 
set to give 10 docking poses/ligand, whereas default values 
were used for other parameters. The flexible docking option 
and XP mode were used in all calculations.

Results and discussion

Pharmacophore generation
The pharmacophore model was built using a set of 24 
compounds (with diverse chemical structures) and the 
Catalyst program. The data set of compounds consisted 
of derivatives of 2,4-diaminoquinazoline, 2,4-diamino-
5,6,7,8-teterahydroquinazoline, 2,4-diamonopteridine, 
and also 3 (Figure 2). The in vitro inhibitory activities of 
these compounds against the multiple-drug resistant (V1/S 
strain) PfDHFR enzyme were carried out using the same 
method27. The compounds with their associated conforma-
tional models were submitted to the Catalyst hypothesis 
generation (HipHop) run.

In order to generate the best model, several HipHop 
runs were carried out by varying the control parameters 
(data not shown). Among those several runs, the selected 
HipHop run was obtained by setting three parameters: 
misses, feature misses, and complete misses to 3, 2, and 
2, respectively. The Principal value of 2 and MaxOmitFeat 
value of 0 were assigned to the most active compounds  
(3 and 17). For the rest of the compounds, the Principal value  
of 1 and MaxOmitFeat value of 1 were assigned37. The features 
selected for this run were hydrogen bond donor (D), positive 
ionizable (PI), hydrophobic aromatic (Z), ring aromatic (R), 
and hydrophobic aliphatic (H). This HipHop run resulted 
in 10 hypotheses (hypo1–10). Their ranking scores ranged 
from 241.11 to 255.74 kcal/mol (Table 1). All of them were 
four-feature hypotheses. Hypo1–4, 6, 9, and 10 consisted of 
Z, H, and two Ds whereas hypo5, 7, and 8 each consisted of 
R, H, and two Ds (Table 1).

As given in Table 1, the first four hypotheses (hypo1 to 
hypo4) had the same molecular features and close ranking 
scores. Analysis of best-fit values of the training set com-
pounds against these hypotheses was carried out to choose 
the best model. The calculated best-fit values indicated  
hypo1 to be the best model (Table 2). Each of the compounds 
in the training set showed a good best-fit value with respect 
to this model. Thus, the model was chosen as a query for the 
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Figure 2.  Chemical structures of the training set compounds used for pharmacophore model generation.

Figure 2. Continued on next page.
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virtual screening in order to identify structures that matched 
its functional and spatial constraints. Figure 3 shows the 
3D mappings of 4, 8, 9, 17, 18, 19, and WR99210 (3) onto 
hypo1.

Validation of hypo1 and virtual screening
Before performing the actual virtual screening, the 
model was validated based on (i) the presence of chemi-
cal features required for interactions with key amino 

H2N

N

Cl H
N

OMe

OMe

OMe

N
18

NH2

H2N

N

OMe

OMe

OMe

N
21

NH2

H2N

N

N

24

NH2

H2N

N

N

WR99210 (3)

N
O O

NH2

H2N

N

N

N

Cl

Cl

Cl

Cl

Cl

25

NH2

H2N

N

N

Cl
NH2

Pyrimethamine (1)

N

H2N

N

Cl
N

OMe

MeO

OMe

OMe

OMe

Br

OMe

OMe

OMe

OMe

N
19

NH2

H2N

N

SN
22

NH2

H2N

N

N

23

NH2 Cl H
N

H2N

N

Cl

N
H

Br
OMe

OMe

OMe

N
20

NH2

Figure 2. Continued.

Table 1.  Summary of the hypotheses generated by a Catalyst/HipHop run.

Hypothesis Molecular featuresa Ranking scoreb Direct hit (DH)c Partial hit (PH)d

1 ZHDD 255.74 011111111101111111110111 100000000010000000001000

2 ZHDD 253.50 011111111101111111110111 100000000010000000001000

3 ZHDD 252.88 011111111101111111110111 100000000010000000001000

4 ZHDD 252.48 011111111101111111110111 100000000010000000001000

5 RHDD 249.25 111111111111111111110110 000000000000000000001001

6 ZHDD 249.14 011111111101111111110111 100000000010000000001000

7 RHDD 246.00 111111111111111111110110 000000000000000000001001

8 RHDD 243.91 111111111111111111110110 000000000000000000001001

9 ZHDD 243.10 011111111101111111110111 100000000010000000001000

10 ZHDD 241.11 111111111111111111110110 000000000000000000001001
aZ, hydrophobic aromatic; H, hydrophobic aliphatic; D, hydrogen bond donor; R, ring aromatic.
bThe higher the ranking score, the less likely it is that the molecules in the set fit the hypothesis by a chance correlation. The best hypothesis shows the 
highest value.
cDirect hit indicates whether (1) or not (0) a molecule in the training set mapped every feature in the hypothesis.
dPartial hit indicates whether (1) or not (0) a particular molecule in the training set mapped all but one feature in the hypothesis. Numeration of mol-
ecules is from right to left in both DH and PH34.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.  Mapping of 4 (a), 8 (b), 9 (c), 17 (d), 18 (e), 19 (f ), and WR99210 (3) (g) onto hypo1. Pharmacophoric features are color-coded (violet, hydrogen 
bond donor; blue, hydrophobic aliphatic; light blue, aromatic hydrophobic).

Table 2.  pIC
50

, number of conformers, best-fit values, and ΔE values of the training set compounds.

Compounda pIC
50

b Conf.c

Best-fit valued ΔE (kcal/mol) of conformatione

Hypo1 Hypo2 Hypo3 Hypo4 Hypo1 Hypo2 Hypo3 Hypo4

4 7.30 32 2.960 1.985 1.440 3.326 17.420 1.397 13.346 10.971

5 6.85 147 3.590 2.897 2.342 2.886 9.260 16.361 3.189 16.631

6 5.77 113 3.332 3.744 2.899 3.107 3.064 7.553 8.836 1.979

7 5.55 206 2.691 2.954 2.589 2.886 16.589 13.317 13.737 4.274

8 7.54 105 3.959 2.968 2.986 3.886 10.116 9.651 8.354 11.252

9 7.44 69 2.951 2.897 1.806 3.759 18.626 19.471 13.049 15.347

10 5.89 82 3.031 3.056 2.609 2.821 5.664 15.421 11.947 0.327

11 5.75 66 3.422 3.483 2.579 2.943 12.770 1.847 1.506 10.735

12 6.00 103 3.039 3.007 2.627 2.918 6.265 15.884 5.685 7.028

13 6.20 240 2.451 3.655 3.152 3.347 11.229 11.059 5.091 5.377

14 5.92 226 2.937 2.960 2.602 2.820 18.223 9.043 14.27 18.223

15 5.85 254 3.516 3.906 3.137 3.385 9.227 18.264 8.995 19.165

16 5.00 249 2.972 2.840 2.893 2.923 2.483 14.678 10.491 13.438

17 8.05 103 4.000 2.955 3.752 4.000 11.430 15.610 9.664 5.496

18 7.49 117 3.988 2.919 3.469 3.970 10.965 6.858 13.295 7.682

19 7.51 127 3.992 2.838 3.443 3.949 8.337 16.648 10.719 3.698

20 6.65 87 3.979 2.825 3.468 3.961 12.051 11.733 11.421 5.835

21 5.77 116 3.907 2.550 3.262 3.653 5.702 7.052 10.486 19.096

22 5.00 86 3.938 2.659 3.065 3.505 19.126 11.977 5.028 15.964

23 5.85 175 3.984 2.931 3.827 3.976 18.843 19.645 12.593 5.389

24 6.77 25 2.129 3.845 2.789 2.213 0.978 19.790 15.113 0.303

25 7.15 3 2.646 0.286 2.542 1.997 0.003 0.003 0.000 0.000

Pyrimethamine (1) 5.38 6 1.988 0.565 0.798 1.438 0.086 0.059 0.000 0.059

WR99210 (3) 8.57 158 3.868 3.494 3.899 3.898 9.027 6.845 4.231 9.449
aIUPAC names of the compounds are given in ref. 27.
bIC

50
 (in nM ranges) values are given in ref. 27.

cNumber of conformational models of training set compounds within the range of 20 kcal/mol from the global minimum.
dBest-fit value of the conformer used for mapping.
eEnergy difference between the conformer used for mapping and the global minimum calculated by Catalyst software34.
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acid residues (Ile14, Asp54, Leu164) in the active site 
of PfDHFR. The model had four features (one H, one Z, 
and two Ds). This observation is consistent with that of 
known antifolate PfDHFR inhibitors (e.g. 3)6,7,11,25. In this 
inhibitor, it has been observed that two hydrogen bond 
donors interact with Asp54 and backbone amino acids 
(Ile14 or/and Leu164). On the other hand, hydrophobic 
features interact with amino acid residues such as Met55, 
Ser111, and Pro113 near the opening of the active site 
via hydrophobic interactions. For instance, as shown in 
Figure 2, hydrogen bond donor features of hypo1 mapped 
to 2-amino and 4-amino groups. The hydrophobic aro-
matic feature mapped on the phenyl side chain, whereas 
the hydrophobic aliphatic feature of the model mapped 
on the Cl group. Moreover, the conformation of 3, which 
was extracted from the X-ray crystallographic structure of 
the quadruple-mutant PfDHFR enzyme, was also found to 
perfectly overlap onto hypo1 (data not given). Similarly, 
the features of hypo1 mapped onto the appropriate chemi-
cal features of other active compounds (4, 8, 9, 17, and 18) 
as illustrated in Figure 3, and (ii) the best-fit values of the 
training set molecules obtained by mapping onto hypo1 
were generally higher than the corresponding values for 
other hypotheses (Table 2). Thus, hypo1 was selected and 
subsequently used as a query for database searching. The 
Maybridge2004 and NCI2000 databases were searched 
using the “best and flexible database search” option of 
the Catalyst program. The virtual screening resulted in 
267 and 255 hits from Maybridge2004 and NCI2000 data-
bases, respectively. To reduce the number of molecules 
for further analysis, several filtering criteria were used. 
First, Lipinski’s rule-of-five31 was used. According to this 
rule, any drug-like molecule should be characterized by 
molecular weight <500, calculated octanol–water partition 
coefficient (CLogP) <5, number of hydrogen bond donors 
(HBDs) (OH + NH groups) <5, and number of H-bond  
acceptors (HBAs) (O + N atoms) <10. Thus, hits with molec-
ular weight >500, number of HBDs >5, and number of  
HBAs >10 were eliminated from further analysis. Second, 

to avoid too flexible compounds, those hits having more 
than seven rotatable bonds39,40 were also eliminated. The 
remaining 191 hits were subjected to docking into the 
active site of quadruple-mutant PfDHFR using FlexX and 
Glide docking programs in order to investigate their bind-
ing modes and interactions. To verify the reproducibility 
of the docking calculations, the bound ligand (3) was 
extracted from the complex and submitted for one-ligand 
run calculation. This reproduced top scoring conforma-
tions of 3 falling within RMS (root mean square) values 
of 0.96 Å and 0.489 Å from the bound X-ray conformation 
for FlexX and Glide docking, respectively. The binding 
modes of the hits were ranked according to FlexX score 
and Glide score values. In the case of FlexX docking, other 
scoring functions such as G-score, PMF-score, D-score, 
and C-score were also used for further refining of the hits. 
The hits with better or comparative scores were retained 
for further analysis. The Catalyst “best-fit” values were 
calculated for each retained hit using hypo1.

Those hits with “best-fit” value <1.5 were rejected. Based 
on visual inspection of the binding modes of the hits from 
both FlexX and Glide docking calculations, together with 
binding scores and “best-fit” values, a set of nine hits were 
identified, which belonged to different classes (Table 3). The 
chemical structures of the identified hits are given in Figure 4, 
whereas the mappings of representative hits to hypo1 are 
given in Figure 5.

Binding modes (interactions) of the identified hits
As described in previous sections, the identified hits show all 
the necessary interactions in the active site which are required 
by antifolate PfDHFR inhibitors for effective inhibition of this 
enzyme6,7,11,18,25. Their hydrogen bond donor features interact 
with Asp54 and Ile14 or/and Leu164, whereas the hydropho-
bic portions interact with amino acid residues Met55, Ser111, 
Pro113, and other amino acids via hydrophobic interactions. 
Some of the hits also show H-bond interaction with Asn108. 
Their binding modes also indicated that there is no unfavora-
ble steric clash with Asn108 (mutated from Ser108), which is 

Table 3.  Docking scores of hits identified from the virtual screening study.

S. no. Hit

Glide FlexX

Gscore (Emodel) FlexX score G-score PMF-score D-score ChemScore C-score

1 NCI00043568 –11.34 (–64.5)b –24.78a –211.26 –73.26 –109.68 –40.28 4

2 NCI0029604 –10.21 (–54.6)a –23.82a –134.47 –72.56 –103.24 –26.30 5

3 GK03630 –10.05 (–65.3)a –19.43a –192.00 –55.54 –97.01 –26.11 5

4 GK03628 –9.96 (–59.4)b –17.14a –187.77 –15.10 –102.22 –24.27 3

5 NCI00129588 –9.92 (–63.7)a –19.96a –184.61 –68.31 –100.70 –24.03 5

6 CD00706 –9.53 (–62.5)c –24.64a –31.02 –11.97 –114.57 –33.07 4

7 NCI0027612 –9.26 (–50.2)a –23.11a –123.23 –72.94 –95.66 –24.72 5

8 NCI0037722 –8.69 (–61.6)a –23.35a –171.53 –47.26 –102.20 –29.30 5

9 NCI0014710 –6.33 (–51.6)d –22.40d –38.00 –64.64 –97.19 –26.18 2

 WR99210 (ref.) –8.44 (–80.20)a –17.86a –209.23 –67.80 –134.79 –28.91 5
aHydrogen bond interactions of hits with Ile14, Leu164, and Asp54.
bHydrogen bond interactions of hits with Asp54, Asn108, and Ile14 or Leu164.
cHydrogen bond interactions of hits with Asp54 and Ile14 or Leu164.
dHydrogen bond interactions of hits with Asp54 and Asn108.
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known to be responsible for resistance. The detailed binding 
interactions of some of the hits (NCI0004356, GK-03628, 
NCI0029588, CD00706, NCI0037722, and NCI0014710) are 
given in the following sections. Unless and otherwise men-
tioned specifically, discussion is based on the Glide docking 
result.

Binding mode of NCI0004356
Figure 6a shows the binding mode of NCI0004356 within the 
active site of the quadruple-mutant PfDHFR enzyme. As illus-
trated in this binding model, one of the OH substituents of the 
aromatic ring forms an H-bond with Asp54 with a bond length 
value of 2.092 Å. The OH group of the aliphatic side chain 
interacts with Asn108 and Leu164. This OH group donates 
an H-bond to the carbonyl group of Leu164, and it accepts an 
H-bond from the amino group of Asn108. The corresponding 
H-bond lengths are 2.896 and 1.876 Å, respectively. The long 
side chain of this hit interacts hydrophobically with Met55, 
Ser111, and Pro113.

Binding mode of GK-03628
The binding mode of GK-03628 within the active site 
of the quadruple-mutant PfDHFR enzyme is given in 
Figure 6b. It interacts with Asp54, Ile14, and Asn108. The 
OH group interacts with Asp54 (1.949 Å), whereas its 
amino group interacts with Ile14 (2.897 Å). The S atom of 

the linker unit accepts an H-bond from the amino group of  
Asn108 (2.313 Å) (Figure 6b). Visual inspection also 
showed that its side chain interacts with amino acids 
(Met55, Ser111, and Pro113) in the hydrophobic region of 
the active site.

Binding mode of NCI0029588
The binding mode of NCI0029588 within the active 
site of the quadruple-mutant PfDHFR enzyme is given 
in Figure  6c. Similar to that of the bound ligand (3), 
NCI0029588 interacts with Asp54 as well as backbone 
amino acid residues (Ile14 and Leu164). The H-bond length 
between the OH group of NCI0029588 and oxygen atom of 
the carboxylic group of Asp54 is 2.128 Å. The amino group 
forms H-bonds with Ile14 and Leu164. The corresponding 
H-bond length values are 1.709 and 1.929 Å, respectively 
(Figure 6c).

Binding mode of CD00706
The binding mode of CD00706 within the active site of the 
quadruple-mutant PfDHFR is given in Figure 6d. The OH 
group interacts with Asp54 via H-bonding (1.714 Å) and one 
of the NH groups of the thiourea linker unit forms an H-bond 
with Leu164 (2.260 Å). The second aromatic ring and its OMe 
substituent interact hydrophobically with Met55, Ser111, and 
Pro113.
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Figure 4.  Chemical structures of the identified hits.
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Binding mode of NCI0037722
Figure 6e shows the binding mode of NCI0037722 within the 
active site of the quadruple-mutant PfDHFR. As illustrated 
in the model, it forms all the key H-bond interactions in the 
active site. The Me substituent bearing amino group interacts 
with Asp54 via H-bonding (1.922 Å), whereas the 4-amino 
group forms an H-bond with the backbone amino acids Ile14 
(2.229 Å) and Leu164 (2.225 Å). As in the case of the hits 
discussed above, the side chain of NCI0037722 is oriented 
toward the hydrophobic region of the active site. Thus, it is 
expected to interact with amino acid residues in this region 
via hydrophobic interaction (Figure 6e).

Binding mode of NCI0014710
Figure 6f shows the binding mode of NCI0014710 within the 
active site of the quadruple-mutant PfDHFR. Its two amino 

groups form a bidentate H-bond interaction with Asp54 
(1.616 and 1.867 Å). The N atom of the ring system accepts 
an H-bond from the NH

2
 group of Asn108 (2.291 Å). The ring 

system and its OMe substituents are also expected to interact 
hydrophobically with amino acid residues such as Ser111, 
Pro113, and Met55 (Figure 6f).

Conclusions

Pharmacophore modeling is a powerful method in drug 
design and discovery since it enables medicinal chemists 
to rapidly identify new potential drugs. In this study we 
employed Catalyst/HipHop software to generate a hypoth-
esis having four features: two hydrogen bond donors, one 
aromatic hydrophobic, and one hydrophobic aliphatic. Use 
of this hypothesis as a query for searching Maybridge2004 

(a) (b) (c)

(d) (e) (f)

Figure 5.  Mapping of NCI00043568 (a), GK-03628 (b), NCI0029588 (c), CD00706 (d), NCI0037722 (e), and NCI0014710 (f ) onto hypo1. Pharmacophoric 
features are color-coded (violet, hydrogen bond donor; blue, hydrophobic aliphatic; light blue, aromatic hydrophobic). 
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and NCI2000 databases helped us to identify a set of nine 
potential inhibitors of the quadruple-mutant PfDHFR 
enzyme. The hits were selected based on their docking 
scores, binding orientations, and interactions with key 
amino acid residues in the active site (Asp54, Ile14, and 
Leu164) as well as their interactions in the hydrophobic 
region of the active site. Because of the flexible nature of 
their side chains, there are no potential steric clashes with 
Asn108, which is known to be responsible for resistance of 
the mutant parasite to antimalarial drugs 1 and 26,7,10–13,18,25. 
The hits also fulfill all the properties required by drug-like 
molecules47,48. To the best of our knowledge, there are no 
reports on antimalarial activities of these hits. Thus, we 
encourage those research teams working in the area of anti-
malarial drug discovery to carry out activity tests of these 
hits so that compounds with high activity may be identified 
to overcome resistance.
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enzyme. For the sake of clarity, only important amino acid residues are 
given.
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